Partneři Projektu CAD
Po | Út | St | Čt | Pá | So | Ne |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 20.10. Autodesk Inventor – základní kurz
- 21.10. AutoCAD – kurz pro pokročilé
- 21.10. Školení pro metrology - Příprava na metrologický audit
- 22.10. Školení pro metrology - Minimalizace chyb v metrologii
- 23.10. AutoCAD – kurz pro středně pokročilé
- 23.10. Autodesk Maya – pokročilé techniky modelování
- 23.10. ATCx Digital Twin 2025
- 23.10. Objevte nový přístup k 3D modelování s 3DEXPERIENCE CATIA
- 24.10. Autodesk Maya – pokročilé techniky renderování
- 30.10. Autodesk Inventor – kurz pro středně pokročilé (modelování součástí a plochy)...
Aktuality
- Inženýrský software M4 PLANT nyní s VR prohlížečem
- Izraelští vědci dosáhli průlomu v 3D tisku skla
- Cate Lochead ředitelkou marketingu v Bentley Systems
- Siemens Trutnov snížil chybovost vyskladnění o 70 %
- BAE Systems a PragoData podporují produkty pro český obranný sektor
- Pulsonix 14.0 vylepšuje návrhy plošných spojů
- Nový materiál pro rapid tooling: Ultracur3D RG 3280
- MCAE na MSV nemůže chybět
Návrh řešení ohýbacího přípravku v Solid Edge V19 |
Pondělí, 23 Květen 2011 12:42 | |
![]() Článek je zaměřen na řešení problematiky modelování polotovaru ohybem do tvaru V s využitím konkrétního CAD systému. Cílem práce bylo navrhnout stavebnicovou konstrukci nástroje pro ohýbání výlisků do tvaru V (obr. 2, obr. 3). Na obr. 1 je uveden tvar a doporučené rozměry polotovaru. Navržený nástroj je stavebnicové konstrukce. Při ohybníku do tvaru V existují různé možnosti úhlu ohybu. Pomocí navrženého nástroje můžeme vzorek ohýbat buď s přidržovačem, nebo bez přidržovače. Na obrázku 2 je znázorněn model polotovaru ohýbaný bez přidržovače a na obrázku 3 je model ohýbaný pomocí přidržovače. ![]() Postup návrhu nástroje v Solid Edge V19Nástroj (obr. 13) byl kompletně navržen a následně vymodelován ve 3D prostředí pomocí grafického programu Solid Edge V19. Postup při návrhu některých částí nástroje byl následující: Nejprve bylo nutné zvolit funkci Protrusion – vytažení profilu po přímce. Profil lze buď přidat, nebo odebrat. Tato operace je znázorněna na obr. 4. Skici jednotlivých částí byly provedeny pomocí funkce Sketch. Tato funkce umožňuje namodelovat jednotlivé části v 2D prostředí a parametrizovat je. Tato funkce je znázorněna na obr. 5. Příkaz Revolved Protrusion – model vzniká rotací profilu kolem osy. Tento příkaz byl použit na modelování rotačních součástek. Znovu bylo třeba zvolit danou funkci, vytvořit danou skicu a parametrizovat ji (obr. 6). Funkcí Hole byly na potřebných plochách vytvořeny závity a díry. Tato funkce je znázorněna na obr. 7. Symetrické součástky byly řešeny přes funkci Mirror. Funkce Mirror spočívá ve vybrání tělesa a roviny, podle níž se dané těleso zrcadlí. Tato funkce byla použita například při modelování pružin. Dále byla použita funkce Round – slouží pro zaoblení hran na tělese. Postup při zadávání příkazu byl následující:
Jako poslední byla použita funkce Chamfer – sražení. Tento příkaz slouží pro vytvoření sražení mezi dvěma plochami na jejich společné hraně. Funkci Chamfer můžeme aplikovat na závěr po vymodelování základních prvků. Byla použita na všechny ostré hrany z důvodu bezpečnosti. Po vymodelování všech součástek byla použita funkce Part Painter, pro lepší rozlišení jednotlivých dílů soustavy. Po těchto úkonech nastal proces spojování daných dílů do sestavy. Tento celek byl vytvořen postupným složením jednotlivých dílů. Na způsob určení, jakým způsobem jsou navzájem uspořádány jednotlivé komponenty v tomto procesu skládání vůči sobě, nám slouží sestavné podmínky. Tyto podmínky nám slouží k jednoznačnému definování uložení každého nového dílu vůči ostatním dílům v sestavě. Jednotlivé díly spojujeme, dokud není hotová celá sestava, a dbáme přitom na sestavné podmínky. Celý rozložený přípravek je znázorněn na obr. 14.
|