Partneři Projektu CAD
| Po | Út | St | Čt | Pá | So | Ne |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 | 31 |
- 18.12. Autodesk Inventor – kurz pro pokročilé (sestavy a strojní návrhy)
- 18.12. AutoCAD kurz – navrhování a správa dynamických bloků
- 18.12. AutoCAD – kurz pro pokročilé
- 25.12. workshop Strukturální mechanika v programu COMSOL Multiphysics
- 25.12. workshop Strukturální mechanika v programu COMSOL Multiphysics
- 05.01. Autodesk Fusion 360 – základní kurz (úvod do parametrického modelování)
- 05.01. Autodesk Fusion 360 – základní kurz (úvod do parametrického modelování)
- 05.01. AutoCAD 2013 - základní kurz
- 06.01. Autodesk Fusion 360 – pro uživatele Autodesk Inventor
- 07.01. AutoCAD a AutoCAD LT – základní kurz
Aktuality
- Nový 3D konfigurační nástroj pro výrobce rekreačních vozidel
- 3D tisk kovů a plastů – 3 zcela nové technologie v Plzni
- Autodesk Executive Roundtable „AI a transformace v průmyslu“
- T-Mobile zajistil 5G sítí provoz autonomních robotů v Nemocnici Jihlava
- Vyzkoušejte 3D návrh továrny ve virtuální realitě
- HANNOVER MESSE 2026 – poslední volné plochy!
- Looq AI rozšiřuje globální partnerskou síť pro snímání reality v geodetické kvalitě
- Zuken představil Panel Builder 2026 pro E3.series
Virtuální prototypy v těžkém průmyslu |
| Autor článku: Jan Genco | ||||
| Pátek, 26 Červenec 2013 08:38 | ||||
|
Skipový vrátek otáčením lanového bubnu namotává dvojici lan, která po skipové dráze dopravuje nahoru plně naložený skipový vozík s hmotností i 30 tun. Prázdný vozík je upevněn na druhé dvojici lan, která se z bubnu odvíjí. Sestava skipového vrátku patří k výpočtovým lahůdkám, protože namáhání je během navinování lana v každém okamžiku jiné. Také zde působí více zdrojů zatížení: tahy v lanech, spojení pomocí tangenciálních klínů nebo předepnutí šroubů. Aby výpočet odpovídal co nejvíce skutečnosti, byla vymodelována a analyzována celá sestava skipového vrátku. Tato sestava se skládá z bubnu s navinutým lanem, který je spojen s hřídelí pomocí tangenciálních klínů. Hřídel je uložená v ložiskových domcích a spojkou je spojená s převodovou skříní a pohony. Všechny tyto komponenty jsou na rámu, který je uchycen přes kotevní šrouby k základu.
3D model sestavy byl vytvořen v ProEngineeru pro potřeby výpočtáře a naimportován do systému ANSYS. V ANSYSu byla geometrie upravena a použita pro tvorbu konečnoprvkové sítě z 3D solid prvků. Na tvorbu sítě byl kladen velký důraz. Aby objem dat byl přijatelný a spočitatelný a přitom výpočtový model byl včetně detailů, jako jsou svary, konstrukční zaoblení a zkosení atd., byla síť vytvořena převážně prostorovými šestistěny. Uložení jednotlivých komponent je simulováno pomocí vazbových rovnic a kontaktů.
Dynamická analýza Výhodou je, že celkový výpočtový model je možno lehce modifikovat tak, abychom mohli výpočtový model analyzovat v různých polohách během odvíjení lan a řešit různé typy úloh – statická, dynamická a různé situace – brzdění za pomoci kotoučový brzd, havarijní stav, kdy dojde k zablokování tahaných vozíků či k výpadku jednoho ze dvou motorů. Zvýšená pozornost byla kromě bubnu věnována ložiskovým domkům, protože tah v lanech je směrem svisle vzhůru a toto zatížení plně přenáší předepnuté šrouby v domcích. Poddimenzování by znamenalo uvolnění pohybujícího se bubnu. Geometrie výpočtového modelu byla optimalizována tak, aby byla zaručena spolehlivost a bezporuchovost zařízení po předepsanou délku technického života skipového vrátku.
Stejně výpočtově zajímavým zařízením je sklápěč pánví, který je umístěn na sloupech ve výšce 8 metrů a musí být schopen překlopit a vylít z pánve 120 tun tekutého železa. Konstrukci bylo nutné optimalizovat tak, aby hmotnost zařízení byla minimální při zaručené spolehlivosti. Výpočtový model byl vytvořen z 3D šestistěnných solid prvků, tam, kde bylo vysíťování obtížné, byly použity 3D parabolické čtyřstěnné solid prvky. Model byl konstruován včetně svarů tak, abychom na základě výpočtů měli navrženy správné velikosti a typy všech svarů. Sklápěč byl analyzován v několika polohách a funkcích: při položení plné pánve na sklápěč včetně dynamických účinků, počátek zvedání pánve, náklon těsně před počátkem vylévání pánve a poloha při úplném vylití pánve. Také byla simulována havarijní situace, kdy přestane fungovat jeden ze dvou hydraulických pohonů. Autor pracuje v akciové společnosti Paul Wurth.
Mohlo by vás zajímat:
|










Ostravská akciová společnost Paul Wurth, dceřiná společnost lucemburské firmy Paul Wurth S.A., dodavatel zařízení vysokých pecí, konstruuje a vyvíjí mimo jiné i skipové vrátky a sklápěče pánví. Tato zařízení musí splňovat požadavky zákazníka a musí být naprosto spolehlivá po celou dobu svého technického života, protože pracují v nepřetržitém provozu a není za ně náhrada. Sebemenší závada znamená odstávku vysoké pece či havárii s tragickými následky. Proto jsou daná zařízení virtuálně testována za pomoci počítačového systému ANSYS.




